Specific inhibitory synapses shift the balance from feedforward to feedback inhibition of hippocampal CA1 pyramidal cells.
نویسندگان
چکیده
Feedforward and feedback inhibition are two fundamental modes of operation widespread in the nervous system. We have functionally identified synaptic connections between rat CA1 hippocampal interneurons of the stratum oriens (SO) and interneurons of the stratum lacunosum moleculare (SLM), which can act as feedback and feedforward interneurons, respectively. The unitary inhibitory postsynaptic currents (uIPSCs) detected with K-gluconate-based patch solution at -50 mV had an amplitude of 20.0 +/- 2.0 pA, rise time 2.2 +/- 0.2 ms, decay time 25 +/- 2.2 ms, jitter 1.4 +/- 0.2 ms (average +/- SEM, n = 39), and were abolished by the gamma-aminobutyric acid (GABA)(A) receptor antagonist 2-(3-carboxypropyl)-3-amino-6-methoxyphenyl-pyridazinium bromide (SR 95531). Post hoc anatomical characterization revealed that all but one of the identified presynaptic neurons were oriens-lacunosum moleculare (O-LM) cells, whereas the postsynaptic neurons were highly heterogeneous, including neurogliaform (n = 4), basket (n = 4), Schaffer collateral-associated (n = 10) and perforant path-associated (n = 9) cells. We investigated the short-term plasticity expressed at these synapses, and found that stimulation at 10-40 Hz resulted in short-term depression of uIPSCs. This short-term plasticity was determined by presynaptic factors and was not target-cell specific. We found that the feedforward inhibition elicited by the direct cortical input including the perforant path onto CA1 pyramidal cells was modulated through the inhibitory synapses we have characterized. Our data show that the inhibitory synapses between interneurons of the SO and SLM shift the balance between feedback and feedforward inhibition onto CA1 pyramidal neurons.
منابع مشابه
Synapse-Specific Inhibitory Control of Hippocampal Feedback Inhibitory Circuit
Local circuit and long-range GABAergic projections provide powerful inhibitory control over the operation of hippocampal inhibitory circuits, yet little is known about the input- and target-specific organization of interacting inhibitory networks in relation to their specific functions. Using a combination of two-photon laser scanning photostimulation and whole-cell patch clamp recordings in mi...
متن کاملEstrogen regulates functional inhibition of hippocampal CA1 pyramidal cells in the adult female rat.
Previous studies have focused considerable attention on the effects of estrogen on excitatory synaptic input to hippocampal CA1 pyramidal cells. Estrogen increases the density of dendritic spines and synapses on CA1 pyramidal cells and increases the sensitivity of these cells to excitatory synaptic input. Little is known, however, about the effects of estrogen on inhibitory synaptic input to CA...
متن کاملGABAergic Activities Control Spike Timing- and Frequency-Dependent Long-Term Depression at Hippocampal Excitatory Synapses
GABAergic interneuronal network activities in the hippocampus control a variety of neural functions, including learning and memory, by regulating θ and γ oscillations. How these GABAergic activities at pre- and postsynaptic sites of hippocampal CA1 pyramidal cells differentially contribute to synaptic function and plasticity during their repetitive pre- and postsynaptic spiking at θ and γ oscil...
متن کاملCalexcitin transformation of GABAergic synapses: from excitation filter to amplifier.
Encoding an experience into a lasting memory is thought to involve an altered operation of relevant synapses and a variety of other subcellular processes, including changed activity of specific proteins. Here, we report direct evidence that co-applying (associating) membrane depolarization of rat hippocampal CA1 pyramidal cells with intracellular microinjections of calexcitin (CE), a memory-rel...
متن کاملalpha7 nicotinic acetylcholine receptors on GABAergic interneurons evoke dendritic and somatic inhibition of hippocampal neurons.
GABAergic interneurons in the hippocampus express high levels of alpha7 nicotinic acetylcholine receptors, but because of the diverse roles played by hippocampal interneurons, the impact of activation of these receptors on hippocampal output neurons (i.e., CA1 pyramidal cells) is unclear. Activation of hippocampal interneurons could directly inhibit pyramidal neuron activity but could also prod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 27 1 شماره
صفحات -
تاریخ انتشار 2008